University of Connecticut University of UC Title Fallback Connecticut

Publications

Peer reviewed journals:

[57] L. Kuna, J. Mangeri, P.-X. Gao, S. Nakhmanson, Stress-induced shift of band gap in ZnO nanowires from finite-element modeling, submitted (2017).

[56] R. Agarwal, Y. Sharma, S. Chang, K. C. Pitike, C. Sohn, S. M. Nakhmanson, C. G. Takoudis, H. N. Lee, J. F. Scott, R. S. Katiyar, S. Hong, Lead-free relaxor ferroelectricity and photovoltaic effects in SnTiOx directly deposited on Si substrate, submitted (2017).

[55] S. F. Yuk, K. C. Pitike, S. M. Nakhmanson, M. Eisenbach, Y. W. Li, V. R. Cooper, Towards an accurate description of perovskite ferroelectrics: exchange and correlation effects, Sci. Rep. 7, 43482 (2017).

[54] J. Mangeri, Y. Espinal, A. Jokisaari, S. P. Alpay, S. Nakhmanson, O. Heinonen, Topological phase transformations and intrinsic size effects in ferroelectric nanoparticles, Nanoscale 9, 1616 (2017).

[53] A. Ghosh, T. Ahmed, D. A. Yarotski, S. M. Nakhmanson, J.-X. Zhu, Oxygen vacancy effects on double perovskite Bi2FeMnO6: A first-principles study, Europhys. Lett. 116, 57002 (2016).

[52] T. Wang, K. C. Pitike, Y. Yuan, S. M. Nakhmanson, V. Gopalan, B. Jalan, Chemistry, growth kinetics, and epitaxial stabilization of Sn2+ in Sn-doped SrTiO3 using (CH3)6Sn2 tin precursor, APL Mater. 4, 126111 (2016).

[51] J. Mangeri, K. C. Pitike, S. P. Alpay, S. M. Nakhmanson, Amplitudon and Phason Modes of Electrocaloric Energy Interconversion, NPJ Comp. Mater. 2, 16020 (2016).

[50] S. Hong, S. M. Nakhmanson, D. D. Fong, Screening mechanisms at polar oxide heterointerfaces, Rep. Prog. Phys. 79, 076501 (2016).

[49] S. Chang, S. K. Selvaraj, Y.-Y. Choi, S. Hong, S. M. Nakhmanson, and C. G. Takoudis, Atomic layer deposition of environmentally benign SnTiOx as a potential ferroelectric material, J. Vac. Sci. Technol. A 34, 01A119 (2016).

[48] M. P. Cosgriff, P. Chen, S. S. Lee, H. J. Lee, L. Kuna, K. C. Pitike, L. Louis, W. D. Parker, H. Tajiri, S. M. Nakhmanson, J. Y. Jo, Z. Chen, L. Chen, and P. G. Evans, Nanosecond Phase Transition Dynamics in Compressively Strained Epitaxial BiFeO3, Adv. Electron. Mater. 2, 1500204 (2016).

[47] Y. Li, C. Adamo, P. Chen, P. G. Evans, S. M. Nakhmanson, W. Parker, C. E. Rowland, R. D. Schaller, D. G. Schlom, D. A. Walko, H. Wen, and Q. Zhang, Giant optical enhancement of strain gradient in ferroelectric BiFeO3 thin films and its physical origin, Sci. Rep. 5, 16650 (2015).

[46] F.-C. Sun, A. M. Dongare, A. D. Asandei, S. P. Alpay and S. Nakhmanson, Temperature dependent structural, elastic, and polar properties of ferroelectric polyvinylidene fluoride and trifluoroethylene copolymers, J. Mater. Chem. C 3, 8389-8396 (2015).

[45] J. Mangeri, O. Heinonen, D. Karpeyev, and S. Nakhmanson, Influence of Elastic and Surface Strains on the Optical Properties of Semiconducting Core-Shell Nanoparticles, Phys. Rev. Applied 4, 014001 (2015).

[44] L. Louis and S. M. Nakhmanson, Structural, vibrational, and dielectric properties of Ruddlesden-Popper Ba2ZrO4 from first principles, Phys. Rev. B 91, 134103 (2015).

[43] K. C. Pitike, W. D. Parker, L. Louis, and S. M. Nakhmanson, First-principles studies of lone-pair-induced distortions in epitaxial phases of perovskite SnTiO3 and PbTiO3, Phys. Rev. B 91, 035112 (2015).

[42] J. H. Lee, G. Luo, I. C. Tung, S. H. Chang, Z. Luo, M. Malshe, M. Gadre, A. Bhattacharya, S. M. Nakhmanson, J. A. Eastman, H. Hong, J. Jellinek, D. Morgan, D. D. Fong, and J. W. Freeland, Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy, Nature Mater. 13, 879-883 (2014).

[41] Byounghak Lee, Serge M. Nakhmanson and Olle Heinonen, Strain induced vortex-to-uniform polarization transitions in soft-ferroelectric nanoparticles, Appl. Phys. Lett. 104, 262906 (2014).

[40] D. J. Li, S. Hong, S. Gu, Y. Choi, S. Nakhmanson, O. Heinonen, D. Karpeev and K. No, Polymer piezoelectric energy harvesters for low wind speed, Appl. Phys. Lett. 104, 012902 (2014).

[39] W. D. Parker and S. M. Nakhmanson, Density functional study of the structural, electronic, and vibrational properties of  β-Ba2TiO4, Phys. Rev. B 88, 245108 (2013).

[38] W. D. Parker and S. M. Nakhmanson, Strain-induced incommensurate distortions in epitaxial Ruddlesden-Popper-type Ba2TiO4, Phys. Rev. B 88, 035203 (2013).

[37] J. He, G. B. Stephenson, S. M. Nakhmanson, Electronic surface compensation of polarization in PbTiO3 films, J. Appl. Phys. 112, 054112 (2012).

[36] V. Zelezny, A. Soukiassian, X. X. Xi, D. G. Schlom, J. Hlinka, C. Kadlec and S. M. Nakhmanson, Infrared Spectroscopy of Nanoscopic Epitaxial BaTiO3/SrTiO3 Superlattices, Integrated Ferroelectrics 134, 146 (2012).

[35] P. Chen, J. Y. Jo, H. N. Lee, E. M. Dufresne, S. M. Nakhmanson, and P. G. Evans, Domain- and symmetry-transition origins of reduced nanosecond piezoelectricity in ferroelectric/dielectric superlattices, New J. Phys. 14, 013034 (2012).

[34] W. D. Parker, J. M. Rondinelli, and S. M. Nakhmanson, First-principles study of misfit strain-stabilized ferroelectric SnTiO3, Phys. Rev. B 84, 245126 (2011).

[33] J. Hlinka, V. Zelezny, S. M. Nakhmanson, A. Soukiassian, X. X. Xi, and D. G. Schlom, Soft-mode Spectroscopy of epitaxial BaTiO3/SrTiO3 Superlattices, Phys. Rev. B 82, 224102 (2010).

[32] J. Y. Jo, R. J. Sichel, E. M. Dufresne, H. N. Lee, S. M. Nakhmanson, and P. G. Evans, Component-specific electromechanical response in a ferroelectric/dielectric superlattice, Phys. Rev. B 82, 174116 (2010).

[31] J. Y. Jo, R. J. Sichel, H. N. Lee, S. M. Nakhmanson, E. M. Dufresne, and P. G. Evans, Piezoelectricity in the dielectric component of nanoscale dielectric/ferroelectric superlattices, Phys. Rev. Lett. 104, 207601 (2010).

[30] S. M. Nakhmanson, R. Korlacki, J. Travis Johnson, S. Ducharme, Z. Ge and J. M. Takacs, Vibrational properties of ferroelectric β-vinylidene fiuoride polymers and oligomers, Phys. Rev. B 81, 174120 (2010).

[29] V. Ranjan, L. Yu, S. Nakhmanson, J. Bernholc, M. Buongiorno Nardelli, Polarization Effects and Phase Equilibria in High Energy Density PVDF-based Polymers, Acta Cryst. A 66, 553-557 (2010).

[28] S. M. Nakhmanson and I. Naumov, Goldstone-like states in a layered perovskite with frustrated polarization: a first-principles investigation of PbSr2Ti2O7, Phys. Rev. Lett. 104, 097601 (2010).

[27] S. M. Nakhmanson, Revealing latent structural instabilities in perovskite ferroelectrics by layering and epitaxial strain: a first-principles study of Ruddlesden Popper superlattices, Phys. Rev. B 78, 064107 (2008).

[26] D. A. Tenne, I. E. Gonenli, A. Soukiassian, D. G. Schlom, S. M. Nakhmanson, K. M. Rabe, X. X. Xi, Raman study of oxygen reduced and re-oxidized strontium titanate, Phys. Rev. B 76, 024303 (2007).

[25] H. N. Lee, S. M. Nakhmanson, M. F. Chisholm, H. M. Christen, K. M. Rabe, and D. Vanderbilt, Suppressed Dependence of Polarization on Epitaxial Strain in Highly Polar Ferroelectrics, Phys. Rev. Lett. 98, 217602 (2007).

[24] J. Bernholc, W. Lu, S. M. Nakhmanson, P. H. Hahn, V. Meunier, M. Buongiorno Nardelli, W. G. Schmidt, Atomic scale design of nanostructures, Mol. Phys. 105, 147-156 (2007).

[23] D. A. Tenne, A. Bruchhausen, N. D. Lanzillotti Kimura, A. Fainstein, R. S. Katiyar, A. Cantarero, A. Soukiassian, V. Vaithyanathan, J. H. Haeni, W. Tian, D. G. Schlom, K. J. Choi, D. M. Kim, C.-B. Eom, H. P. Sun, X. Q. Pan, Y. L. Li, L. Q. Chen, Q. X. Jia, S. M. Nakhmanson, K. M. Rabe, and X. X. Xi, Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy, Science 313, 1614-1616 (2006).

[22] S. M. Nakhmanson, K. M. Rabe, and D. Vanderbilt, Predicting polarization enhancement in multicomponent ferroelectric superlattices, Phys. Rev. B 73, 060101(R) (2006).

[21] S. M. Nakhmanson, M. Buongiorno Nardelli, and J. Bernholc, Collective polarization effects in β-polyvinylidene fluoride and its copolymers with tri- and tetrafluoroethylene, Phys. Rev. B 72, 115210 (2005).

[20] S. M. Nakhmanson, K. M. Rabe, and D. Vanderbilt, Polarization enhancement in two- and three-component ferroelectric superlattices, Appl. Phys. Lett. 87, 102906 (2005).

[19] J. Bernholc, S. M. Nakhmanson, M. Buongiorno Nardelli, and V. Meunier, Understanding and enhancing polarization in complex materials, Comput. Sci. Eng. 6, 12-21 (2004).

[18] S. V. Khare, S. M. Nakhmanson, P. M. Voyles, P. Keblinski, and J. R. Abelson, Evidence from simulations for orientational medium range order in microscopy observations of a-Si, Microsc. Microanal. 10 (Suppl 2), 820-821 (2004).

[17] S. V. Khare, S. M. Nakhmanson, P. M. Voyles, P. Keblinski, and J. R. Abelson, Evidence from atomistic simulations of fluctuation electron microscopy for preferred local orientations in amorphous silicon, Appl. Phys. Lett. 85, 745-747 (2004).

[16] S. M. Nakhmanson, M. Buongiorno Nardelli and J. Bernholc, Ab initio studies of polarization and piezoelectricity in vinylidene fluoride and BN-based polymers, Phys. Rev. Lett. 92, 115504 (2004).

[15] S. M. Nakhmanson, A. Calzolari, V. Meunier, J. Bernholc and M. Buongiorno Nardelli, Spontaneous polarization and piezoelectricity in boron nitride nanotubes, Phys. Rev. B 67, 235406 (2003).

[14] J. Fabian, J. L. Feldman, C. Stephen Hellberg, and S. M. Nakhmanson, Numerical study of anharmonic vibrational decay in amorphous and paracrystalline silicon, Phys. Rev. B 67, 224302 (2003).

[13] S. M. Nakhmanson, D. A. Drabold and N. Mousseau, Comment on “Boson peak in amorphous silicon: A numerical study,” Phys. Rev. B 66, 087201 (2002).

[12] S. M. Nakhmanson and N. Mousseau, Crystallization study of model tetrahedral semiconductors, J. Phys.: Condens. Matter 14, 6627-6638 (2002).

[11] N. Mousseau, G. T. Barkema and S. M. Nakhmanson, Recent developments in the study of continuous random networks, Philos. Mag. B 82, 171-183 (2002).

[10] S. Nakhmanson, N. Mousseau, G. T. Barkema, P. M. Voyles and D. A. Drabold, Models of Paracrystalline Silicon with a Defect-Free Bandgap, Intl. J. Mod. Phys. B 15 3253-3257 (2001).

[9] P. M. Voyles, N. Zotov, S. M. Nakhmanson, D. A. Drabold, J. M. Gibson, M. M. J. Treacy, P. J. Keblinski, Structure and Physical Properties of Paracrystalline Atomistic Models of Amorphous Silicon, J. Appl. Phys. 90, 4437-4451 (2001).

[8] S. Nakhmanson, P. M. Voyles, N. Mousseau, G. T. Barkema and D. A. Drabold, Realistic Models of Paracrystalline Silicon, Phys. Rev. B 63, 235207 (2001).

[7] S. Nakhmanson and D. A. Drabold, Low-temperature anomalous specific heat without tunneling modes: a simulation for a-Si with voids, Phys. Rev. B 61, 5376-5380 (2000).

[6] S. Nakhmanson and D. A. Drabold, Computer simulation of low-energy excitations in amorphous silicon with voids, J. Non-Cryst. Sol. 266-269, 156-160 (2000).

[5] D. A. Drabold, U. Stephan, J. Dong and S. Nakhmanson, The structure of electronic states in amorphous silicon, J. Mol. Graphics Mod. 17, 285-291, (1999).

[4] P. A. Fedders, D. A. Drabold and S. Nakhmanson, Theoretical study on the nature of band-tail states in amorphous Si, Phys. Rev. B 58, 15624-15631 (1998).

[3] S. Nakhmanson and D. A. Drabold, Approximate ab initio calculation of vibrational properties of hydrogenated amorphous silicon with inner voids, Phys. Rev. B 58, 15325-15328 (1998).

[2] S. A. Nemov, V. I. Proshin, S. M. Nakhmanson, Effect of In doping on the kinetic cofficients in solid solutions of the system (PbzSn1-z)0.95Ge0.05Te, Semiconductors 32, 1062-1064 (1998).

[1] S. M. Nakhmanson, A. Vashuta, I. V. Abarenkov, Paired states in homogeneous low-density electron gas, St-Petersburg State University Journal (1997) [in Russian].

 

Book Chapters:

[2] M. Buongiorno Nardelli, S. M. Nakhmanson, V. Meunier, Polarization in nanotubes and nanotubular structures, in “Nanoengineering of Structural, Functional, and Smart Materials,” pp. 585-610, M. J. Schulz, A. Kelkar and M. J. Sundaresan, Eds., CRC Press (2005).

[1] D. A. Drabold, S. Nakhmanson and X. Zhang, Electronic structure of amorphous insulators and photostructural effects in chalcogenide glasses, in “Properties and Applications of Amorphous Materials,” pp. 221-250, M. Thorpe and L. Tichy, Eds., Kluwer (2001).